3.5.62 \(\int \frac {A+B \tan (c+d x)}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx\) [462]

3.5.62.1 Optimal result
3.5.62.2 Mathematica [A] (verified)
3.5.62.3 Rubi [A] (verified)
3.5.62.4 Maple [C] (warning: unable to verify)
3.5.62.5 Fricas [B] (verification not implemented)
3.5.62.6 Sympy [F]
3.5.62.7 Maxima [F(-1)]
3.5.62.8 Giac [F(-1)]
3.5.62.9 Mupad [F(-1)]

3.5.62.1 Optimal result

Integrand size = 35, antiderivative size = 276 \[ \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=-\frac {(i A-B) \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a-b)^{3/2} d}-\frac {(i A+B) \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a+b)^{3/2} d}-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}+\frac {2 (4 A b-3 a B)}{3 a^2 d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}+\frac {2 b \left (5 a^2 A b+8 A b^3-3 a^3 B-6 a b^2 B\right ) \sqrt {\tan (c+d x)}}{3 a^3 \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}} \]

output
-(I*A-B)*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))/(I* 
a-b)^(3/2)/d-(I*A+B)*arctanh((I*a+b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c 
))^(1/2))/(I*a+b)^(3/2)/d+2/3*(4*A*b-3*B*a)/a^2/d/tan(d*x+c)^(1/2)/(a+b*ta 
n(d*x+c))^(1/2)+2/3*b*(5*A*a^2*b+8*A*b^3-3*B*a^3-6*B*a*b^2)*tan(d*x+c)^(1/ 
2)/a^3/(a^2+b^2)/d/(a+b*tan(d*x+c))^(1/2)-2/3*A/a/d/(a+b*tan(d*x+c))^(1/2) 
/tan(d*x+c)^(3/2)
 
3.5.62.2 Mathematica [A] (verified)

Time = 3.26 (sec) , antiderivative size = 299, normalized size of antiderivative = 1.08 \[ \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=\frac {\frac {3 \sqrt [4]{-1} a \left (\frac {(a+i b) (i A+B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {-a+i b}}+\frac {(i a+b) (A+i B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {a+i b}}\right )}{a^2+b^2}-\frac {2 A}{\tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}+\frac {8 A b-6 a B}{a \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}+\frac {2 b \left (5 a^2 A b+8 A b^3-3 a^3 B-6 a b^2 B\right ) \sqrt {\tan (c+d x)}}{a^2 \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{3 a d} \]

input
Integrate[(A + B*Tan[c + d*x])/(Tan[c + d*x]^(5/2)*(a + b*Tan[c + d*x])^(3 
/2)),x]
 
output
((3*(-1)^(1/4)*a*(((a + I*b)*(I*A + B)*ArcTan[((-1)^(1/4)*Sqrt[-a + I*b]*S 
qrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/Sqrt[-a + I*b] + ((I*a + b)* 
(A + I*B)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b* 
Tan[c + d*x]]])/Sqrt[a + I*b]))/(a^2 + b^2) - (2*A)/(Tan[c + d*x]^(3/2)*Sq 
rt[a + b*Tan[c + d*x]]) + (8*A*b - 6*a*B)/(a*Sqrt[Tan[c + d*x]]*Sqrt[a + b 
*Tan[c + d*x]]) + (2*b*(5*a^2*A*b + 8*A*b^3 - 3*a^3*B - 6*a*b^2*B)*Sqrt[Ta 
n[c + d*x]])/(a^2*(a^2 + b^2)*Sqrt[a + b*Tan[c + d*x]]))/(3*a*d)
 
3.5.62.3 Rubi [A] (verified)

Time = 1.80 (sec) , antiderivative size = 316, normalized size of antiderivative = 1.14, number of steps used = 17, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.457, Rules used = {3042, 4092, 27, 3042, 4132, 27, 3042, 4132, 27, 3042, 4099, 3042, 4098, 104, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \tan (c+d x)}{\tan (c+d x)^{5/2} (a+b \tan (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 4092

\(\displaystyle -\frac {2 \int \frac {4 A b \tan ^2(c+d x)+3 a A \tan (c+d x)+4 A b-3 a B}{2 \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}dx}{3 a}-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {4 A b \tan ^2(c+d x)+3 a A \tan (c+d x)+4 A b-3 a B}{\tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}dx}{3 a}-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {4 A b \tan (c+d x)^2+3 a A \tan (c+d x)+4 A b-3 a B}{\tan (c+d x)^{3/2} (a+b \tan (c+d x))^{3/2}}dx}{3 a}-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 4132

\(\displaystyle -\frac {-\frac {2 \int -\frac {3 A a^2+3 B \tan (c+d x) a^2+6 b B a-8 A b^2-2 b (4 A b-3 a B) \tan ^2(c+d x)}{2 \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{a}-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}}{3 a}-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {\int \frac {3 A a^2+3 B \tan (c+d x) a^2+6 b B a-8 A b^2-2 b (4 A b-3 a B) \tan ^2(c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{a}-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}}{3 a}-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {3 A a^2+3 B \tan (c+d x) a^2+6 b B a-8 A b^2-2 b (4 A b-3 a B) \tan (c+d x)^2}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{a}-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}}{3 a}-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 4132

\(\displaystyle -\frac {\frac {\frac {2 \int \frac {3 \left (a^3 (a A+b B)-a^3 (A b-a B) \tan (c+d x)\right )}{2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}-\frac {2 b \left (-3 a^3 B+5 a^2 A b-6 a b^2 B+8 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{a}-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}}{3 a}-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {\frac {3 \int \frac {a^3 (a A+b B)-a^3 (A b-a B) \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}-\frac {2 b \left (-3 a^3 B+5 a^2 A b-6 a b^2 B+8 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{a}-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}}{3 a}-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\frac {3 \int \frac {a^3 (a A+b B)-a^3 (A b-a B) \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}-\frac {2 b \left (-3 a^3 B+5 a^2 A b-6 a b^2 B+8 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{a}-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}}{3 a}-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}\)

\(\Big \downarrow \) 4099

\(\displaystyle -\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}-\frac {-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}+\frac {-\frac {2 b \left (-3 a^3 B+5 a^2 A b-6 a b^2 B+8 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {1}{2} a^3 (a-i b) (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a^3 (a+i b) (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a \left (a^2+b^2\right )}}{a}}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}-\frac {-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}+\frac {-\frac {2 b \left (-3 a^3 B+5 a^2 A b-6 a b^2 B+8 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {1}{2} a^3 (a-i b) (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a^3 (a+i b) (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a \left (a^2+b^2\right )}}{a}}{3 a}\)

\(\Big \downarrow \) 4098

\(\displaystyle -\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}-\frac {-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}+\frac {-\frac {2 b \left (-3 a^3 B+5 a^2 A b-6 a b^2 B+8 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^3 (a+i b) (A-i B) \int \frac {1}{(1-i \tan (c+d x)) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}+\frac {a^3 (a-i b) (A+i B) \int \frac {1}{(i \tan (c+d x)+1) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}\right )}{a \left (a^2+b^2\right )}}{a}}{3 a}\)

\(\Big \downarrow \) 104

\(\displaystyle -\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}-\frac {-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}+\frac {-\frac {2 b \left (-3 a^3 B+5 a^2 A b-6 a b^2 B+8 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^3 (a-i b) (A+i B) \int \frac {1}{\frac {(i a-b) \tan (c+d x)}{a+b \tan (c+d x)}+1}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {a^3 (a+i b) (A-i B) \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}\right )}{a \left (a^2+b^2\right )}}{a}}{3 a}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}-\frac {-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}+\frac {-\frac {2 b \left (-3 a^3 B+5 a^2 A b-6 a b^2 B+8 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^3 (a+i b) (A-i B) \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {a^3 (a-i b) (A+i B) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}\right )}{a \left (a^2+b^2\right )}}{a}}{3 a}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}-\frac {-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}+\frac {-\frac {2 b \left (-3 a^3 B+5 a^2 A b-6 a b^2 B+8 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^3 (a-i b) (A+i B) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}+\frac {a^3 (a+i b) (A-i B) \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}\right )}{a \left (a^2+b^2\right )}}{a}}{3 a}\)

input
Int[(A + B*Tan[c + d*x])/(Tan[c + d*x]^(5/2)*(a + b*Tan[c + d*x])^(3/2)),x 
]
 
output
(-2*A)/(3*a*d*Tan[c + d*x]^(3/2)*Sqrt[a + b*Tan[c + d*x]]) - ((-2*(4*A*b - 
 3*a*B))/(a*d*Sqrt[Tan[c + d*x]]*Sqrt[a + b*Tan[c + d*x]]) + ((3*((a^3*(a 
- I*b)*(A + I*B)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[ 
c + d*x]]])/(Sqrt[I*a - b]*d) + (a^3*(a + I*b)*(A - I*B)*ArcTanh[(Sqrt[I*a 
 + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a + b]*d)))/( 
a*(a^2 + b^2)) - (2*b*(5*a^2*A*b + 8*A*b^3 - 3*a^3*B - 6*a*b^2*B)*Sqrt[Tan 
[c + d*x]])/(a*(a^2 + b^2)*d*Sqrt[a + b*Tan[c + d*x]]))/a)/(3*a)
 

3.5.62.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4092
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[b*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1) 
/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^ 
2 + b^2))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b* 
B*(b*c*(m + 1) + a*d*(n + 1)) + A*(a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2 
)) - (A*b - a*B)*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(A*b - a*B)*(m + n 
+ 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && 
 NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] 
&& (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] 
 || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4098
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[A^2/f   Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e + f* 
x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[A^2 + B^2, 0]
 

rule 4099
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(A + I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 - I*T 
an[e + f*x]), x], x] + Simp[(A - I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d 
*Tan[e + f*x])^n*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A 
, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2 + B^2, 
0]
 

rule 4132
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Tan[e + 
 f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + 
b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 + b^2))   Int[(a + b*Tan[e + 
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d* 
(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d 
)*(A*b - a*B - b*C)*Tan[e + f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Ta 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ 
[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && 
!(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 
3.5.62.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 4 vs. order 3.

Time = 3.99 (sec) , antiderivative size = 9712, normalized size of antiderivative = 35.19

method result size
default \(\text {Expression too large to display}\) \(9712\)
parts \(\text {Expression too large to display}\) \(1562265\)

input
int((A+B*tan(d*x+c))/tan(d*x+c)^(5/2)/(a+b*tan(d*x+c))^(3/2),x,method=_RET 
URNVERBOSE)
 
output
result too large to display
 
3.5.62.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 18754 vs. \(2 (227) = 454\).

Time = 7.05 (sec) , antiderivative size = 18754, normalized size of antiderivative = 67.95 \[ \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

input
integrate((A+B*tan(d*x+c))/tan(d*x+c)^(5/2)/(a+b*tan(d*x+c))^(3/2),x, algo 
rithm="fricas")
 
output
Too large to include
 
3.5.62.6 Sympy [F]

\[ \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=\int \frac {A + B \tan {\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}} \tan ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate((A+B*tan(d*x+c))/tan(d*x+c)**(5/2)/(a+b*tan(d*x+c))**(3/2),x)
 
output
Integral((A + B*tan(c + d*x))/((a + b*tan(c + d*x))**(3/2)*tan(c + d*x)**( 
5/2)), x)
 
3.5.62.7 Maxima [F(-1)]

Timed out. \[ \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate((A+B*tan(d*x+c))/tan(d*x+c)^(5/2)/(a+b*tan(d*x+c))^(3/2),x, algo 
rithm="maxima")
 
output
Timed out
 
3.5.62.8 Giac [F(-1)]

Timed out. \[ \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate((A+B*tan(d*x+c))/tan(d*x+c)^(5/2)/(a+b*tan(d*x+c))^(3/2),x, algo 
rithm="giac")
 
output
Timed out
 
3.5.62.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx=\int \frac {A+B\,\mathrm {tan}\left (c+d\,x\right )}{{\mathrm {tan}\left (c+d\,x\right )}^{5/2}\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{3/2}} \,d x \]

input
int((A + B*tan(c + d*x))/(tan(c + d*x)^(5/2)*(a + b*tan(c + d*x))^(3/2)),x 
)
 
output
int((A + B*tan(c + d*x))/(tan(c + d*x)^(5/2)*(a + b*tan(c + d*x))^(3/2)), 
x)